Existence and uniqueness of a weak solution to fractional single-phase-lag heat equation

نویسندگان

چکیده

In this article, we study the existence and uniqueness of a weak solution to fractional single-phase lag heat equation. This model contains terms $\cal{D}_t^\alpha(u_t)$ $\cal{D}_t^\alpha u $ (with $\alpha \in(0,1)$), where $\cal{D}_t^\alpha$ denotes Caputo derivative in time constant order $\alpha\in(0,1)$. We consider homogeneous Dirichlet boundary data for temperature. rigorously show unique under low regularity assumptions on data. Our main strategy is use variational formulation semidiscretisation based Rothe's method. obtain priori estimates discrete solutions convergence Rothe functions solution. The approach employed problem. also one-dimensional problem derive representation formula establish bounds explicit its by extending properties multinomial Mittag-Leffler function.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Existence and Uniqueness Theory for the Fractional Heat Equation

We construct a theory of existence, uniqueness and regularity of solutions for the fractional heat equation ∂tu + (−∆) s u = 0, 0 < s < 1, posed in the whole space R with data in a class of locally bounded Radon measures that are allowed to grow at infinity with an optimal growth rate. We consider a class of nonnegative weak solutions and prove that there is an equivalence between nonnegative d...

متن کامل

Existence/uniqueness of solutions to Heat equation in extended Colombeau algebra

This work concerns the study of existence and uniqueness to heat equation with fractional Laplacian dierentiation in extended Colombeau algebra.

متن کامل

Existence and uniqueness of positive and nondecreasing solution for nonlocal fractional boundary value problem

In this article, we verify existence and uniqueness of positive and nondecreasing solution for nonlinear boundary value problem of fractional differential equation in the form $D_{0^{+}}^{alpha}x(t)+f(t,x(t))=0, 0

متن کامل

Existence and Uniqueness of the Solution for a Time-Fractional Diffusion Equation with Robin Boundary Condition

and Applied Analysis 3 is the fundamental solution of TFDE 3, 7–9 . Here H20 12 is the Fox H-function, which is defined via Mellin-Barnes integral representation H20 12 z : H 20 12 [ z | α, α n/2, 1 , 1, 1 ] 1 2πi ∫ C Γ n/2 s Γ 1 s Γ α αs z−s ds, 2.3 where C is an infinite contour on the complex plane circulating the negative real axis counterclockwise. The volume potential is defined by ( Vφ )...

متن کامل

On Existence and Uniqueness of Solution of Fuzzy Fractional Differential Equations

The purpose of this paper is to study the fuzzy fractional differentialequations. We prove that fuzzy fractional differential equation isequivalent to the fuzzy integral equation and then using this equivalenceexistence and uniqueness result is establish. Fuzzy derivative is considerin the Goetschel-Voxman sense and fractional derivative is consider in theRiemann Liouville sense. At the end, we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fractional Calculus and Applied Analysis

سال: 2023

ISSN: ['1311-0454', '1314-2224']

DOI: https://doi.org/10.1007/s13540-023-00177-w